

Faculty of Science

CO₂ stored in biomass and residues under different maintenance forms

example from private gardens

Per Gundersen

Section for Forest, Nature and Biomass Dept. of Geosciences and Natural Resource Manageme

Where is the material in a tree coming from?

Photosynthesis -> biomass -> decomposition -> CO₂

0.01% carbon (as CO_2) in air \rightarrow 50% in wood - via photosynthesis

Solid 'air' – waste or resource?

Brash dump - carbon sink, even deep in the soil

Difference – carbon retaining garden **vs** modern grass garden (860 m² – housing 170 m²)

	kg C
Biomass	500
Dead wood	300
'Forest floors' + brash	200
Mineral soil	600
Total	1600

 $1600 = 5.9 \text{ t CO}_2 = 50.000 \text{ km in car}$

Potential (old growth forest) = $14 \times more C$ stored

Conclusions on urban carbon

- We can increase the carbon density of urban areas:
 - ~ equivalent to extra 1 tCO₂/100 m².
 - in more biomass, dead wood and in soil.
 - ~ half of the C will be sequestered in soil organic matter leading to better nutrient and water retention capacities.
- We can reduce transport of garden waste (= 'solid air' that with time return to the atmosphere anyway).

"We are all just air" Thanks for listening.

